
Topic 10

Data Structures

ICT167 Principles of

Computer Science

© Published by Murdoch University, Perth, Western Australia, 2020.

This publication is copyright. Except as permitted by the Copyright Act no part of it

may in any form or by any electronic, mechanical, photocopying, recording or any

other means be reproduced, stored in a retrieval system or be broadcast or

transmitted without the prior written permission of the publisher

OBJECTIVES

§ Classify common Data Structures according

to whether they are:

§ linear or allow direct access

§ homogeneous or heterogeneous

§ static or dynamic

§ Describe Lists, Queues, Stacks, Sets

§ List and describe the methods which you

would expect to find in the following classes:

List, Queue, Stack

OBJECTIVES

§ Describe the difference between an array

and an ArrayList object in Java

§ Understand generics (parameters for types)

in Java

§ Be able to use an ArrayList in a simple

program

§ Be able to use the for-each loop in Java

§ Be able to use a Stack in a simple program

OBJECTIVES

§ Be able to use a Queue in a simple program

§ List some of the concerns of an implementer

of a Data Structure class

Reading:

Savitch Chapter 12.1 plus extra material

DATA STRUCTURES

§ Data structures are ways of collecting and

organizing (a lot of) data into structures

§ It is common to use a standard abstract data

type (ADT) to manage a structured collection

of data

§ Choose the ADT for the purpose

§ There are many standard ADTs for data

structures

DATA STRUCTURES

§ They vary according to:

§ Whether the data is arranged in a linear way (eg:

an array) or a non-linear way (eg: a tree shape)

§ How access to data items is allowed (one at a

time, first one first – sequential access, or some

sort of indexing – direct access)

§ Whether the data items have to be of the same

type (homogeneous) or can be mixed

(heterogeneous)

DATA STRUCTURES

§ They vary according to:

§ Whether the data structure is static (of fixed size,

known at compile time, eg: an array) or dynamic

(can grow and shrink while program is running,

eg: an ArrayList, a vector or a linked list)

DATA STRUCTURES

§ Programmers need to be familiar with many

data structures in order to:

§ Choose the right one for the job

§ Find it in a library

§ Use it correctly

§ Implement it themselves

DATA STRUCTURES

§ In this unit we just get a basic idea of some

common data structures

§ In later units you’ll get to know many quite well

§ We have already met a homogeneous, linear,

direct access data structure of fixed length:

the array

§ Let us look at some others

THE LIST ADT

§ There is no precise agreement in the

literature about what this is exactly

§ General idea - it is a linear structure of

varying length

§ It is a collection of data stored sequentially

§ For example, a list of students, a list of courses, a

list of books, a list of companies, etc can be

stored using a list

THE LIST ADT

§ Often called linked list – a dynamic data

structure commonly used in many

programming languages

§ Generally a list is homogeneous (i.e. each

item in it is of the same type) but, as we will

see, this is not very important in Java

§ Some definitions allow only sequential access

perhaps with the help of a cursor or list

pointer

THE LIST ADT

§ So you can look at (or remove) the current

item only and have to move the cursor

forwards or backwards through the list to

access other elements

§ Other definitions allow direct access; i.e. you

can do things with the ith element, for any

(meaningful) value of i

§ Eg: the pre-defined class ArrayList available in

java.util package

THE LIST ADT

§ A list (or linked list) consists of nodes

§ Each node has a place for an element of data

and a link (pointer) to another node

§ In Java, each node is an object of a class that

has two instance variables:

§ One for the data and one for the link

§ A pre-defined LinkedList is available in the

java.util package

Figure from textbook

THE LIST ADT

§ In giving a definition of an ADT (eg: list), you

need to just specify what operations are

available on it and say what they do

§ These are the methods which you would expect

to find if someone sold you a library with a list

class in it

§ These are methods which you would have to

provide if you wanted to sell your own list class

§ These are the only operations which you would

be allowed to use if an exam question asked you

to accomplish a task using a list

LIST OPERATIONS

§ Here are some operations which you might

expect to be available for a list of objects of

type T (plus or minus a few)

§ Eg: a list of ints, a list of booleans, a list of

Strings, a list of Books

LIST OPERATIONS

§ Some constructors plus the following

methods:

public void makeEmpty()

public int size() // returns size of list

public T elementAt(int index)

- returns the element at position index

public void setElementAt(int index,

T newValue)

- changes element at position index to newValue

LIST OPERATIONS

public void removeElementAt(int index)

- removes element at position index and moves

all the rest forward

public void insertElementAt(int index,

T newValue)

- puts newValue in the list at index position

and moves the rest along

public void addElement(T newValue)

- puts newValue at the end of list

THE QUEUE ADT

§ The Queue ADT is a homogeneous, linear

structure but with restricted access

§ First-In-First-Out (FIFO) access order

§ In a queue, insertions take place at the back

(the tail) of a queue and deletions take place

from the front (the head) of a queue

THE QUEUE ADT

§ Operations include constructors (to create a

new empty queue with a certain capacity),

plus the following:

public boolean isEmpty()

public boolean isFull()

public void enqueue(T newValue)

- puts newValue at the end of queue, also

called append

THE QUEUE ADT

public T dequeue()

- returns the front value and removes it from

the queue, also called remove

public int size()

- returns the size of the queue

You may also find:

public T peek()

- returns top value without removing it from

queue

THE STACK ADT

§ The Stack ADT is also a homogeneous, linear

structure but with a different restricted access

§ Last-In-First-Out (LIFO) access order

§ In a stack insertions and deletions take place

only at the one end, referred to as the top of a

stack

THE STACK ADT

§ Operations include constructors (to create a

new empty stack with a certain capacity), plus

the following:

public boolean isEmpty()

public boolean isFull()

public void push(T newValue)

- puts newValue at the top

public T pop()

- returns the top value and removes it from the

stack

THE STACK ADT

§ Note that instead (or as well) you may find:

public void pop()

- removes top value from stack

and

public T peek()

- returns top value without removing it from

the stack

THE SET ADT

§ The Set ADT is a non-linear data structure

§ Only one copy of any element is allowed in

the set

§ Operations include constructors and the

following:

public void makeEmpty()

public void add(T newValue)

- adds newValue if it is not there already

(does nothing if it is there already)

THE SET ADT

public void remove(T value)

- removes the only copy of value if it is there

public boolean isIn(T value)

- membership testing

§Other methods include: set union (+) and set

intersection (*) which return a new set

§Note: check Java API and documentation for

any data structure class which you use

§There are many variations on the above

mentioned general ideas

DATA STRUCTURES IN JAVA

§ Many data structures are homogenous (often

for efficiency of memory usage reasons)

§ This creates problems for writers of library

classes. Do they supply code for:

§ a class of queues of ints

§ another class of queues of doubles

§ another class of queues of Strings

§ another class of queues of Books, etc etc?

DATA STRUCTURES IN JAVA

§ In C++ the idea of parameterized classes is

used

§ Java also introduced parameterized classes –

called ‘generics’ – in Java 5.0

§ In Java the simple idea is to allow data

structures to contain Objects

DATA STRUCTURES IN JAVA

§ Each data structure is homogeneous as every

one of its elements is an Object

§ But anything (almost) can go into any data

structure as (almost) everything is a (type of)

Object

DATA STRUCTURES IN JAVA

§ Until Java 5.0, there were two problems:

§ Primitive values (which are not Objects) have to

be wrapped to allow them to be stored, and

§ Everything comes out of a data structure as an

Object and you need to cast it back into its more

specific type in order to call specific methods on it

DATA STRUCTURES IN JAVA

§ Since Java 5.0 (jdk1.5) and later versions,

which allow automatic boxing and

unboxing of primitive types, the above

problems are of much less concern now

THE CLASS ARRAYLIST

§ In Java, arrays (alone) are set up as special

built-in data structures, and they are static

(fixed size)

§ We know that we can have arrays of specific

types including primitives

§ However, once an array is created its size

cannot be changed

§ Although it is possible to create a new larger

array to replace the current array and copy its

elements – it is awkward

THE CLASS ARRAYLIST

§ A more elegant solution is to use an instance
of the Java library class ArrayList

§ ArrayList instances can be thought of as

arrays that grow and shrink while a program

is running

§ However, the base type of an ArrayList

instance must be a class type

THE CLASS ARRAYLIST

§ ArrayList is not automatically part of Java

§ It is available as part of the java.util

package and must be imported by your

program

import java.util.ArrayList;

§ An instance of ArrayList is created in the

same way as any other object except that its

base type is specified using a new notation

(called generics), as follows:

THE CLASS ARRAYLIST

ArrayList<String> list = new

ArrayList<String>(20);

§ The above creates and names an ArrayList

object list which can store instances of class
String and has initial capacity of 20 elements

§ To create an ArrayList instance of default

capacity (default capacity = 10):

ArrayList<String> list = new

ArrayList<String>();

THE CLASS ARRAYLIST

§ The ArrayList class includes constructors:

ArrayList<Base_Type>()

- constructs an empty list with initial

capacity 10. The Base_Type must be a class

type – i.e. it can not be a primitive type

such as int or double

ArrayList<Base_Type>(int

initialCapacity)

- constructs an empty list with the specified

initial capacity. When the list needs to

increase its capacity, the capacity doubles

THE CLASS ARRAYLIST

§ Methods include:

void add(Base_Type obj)

- adds obj to the end of this list

void add(int index, Base_Type obj)

- inserts obj at the specified index position

of this list. Shifts elements at subsequent

positions to make room for the new entry by

increasing their indices by 1

Base_Type get(int index)

- returns the element at the specified index

position

THE CLASS ARRAYLIST

void set(int index, Base_Type obj)

- replaces element at the position specified by

index with the given obj in this list

Base_Type remove(int index)

- removes and returns the element at the

specified index

boolean remove(Object obj)

- removes the first occurrence of obj in this

list

boolean contains(Object obj)

- returns true if obj is in this list,

otherwise returns false

THE CLASS ARRAYLIST

int indexOf(Object obj)

- returns the index of the first occurrence of

obj. Returns -1 if obj is not in the list

void clear()

- removes all of the elements from this list

int size()

- returns the size (number of elements) of the

list

void ensureCapacity(int n)

- increases the capacity of this list, if

necessary, to ensure that it can hold n

elements

THE CLASS ARRAYLIST

void trimToSize()

- trims the capacity of this list to be the

list's current size

boolean isEmpty()

- determines whether the list is empty or not

EXAMPLE

ArrayList<Integer> list = new

ArrayList<Integer>();

System.out.println("The initial size

of list is:" + list.size());

for (int i=0;i < 15;i++)

list.add(i*2+1);

// autoboxing of int to wrapper Integer

System.out.println("\nThe numbers in

the list are:");

EXAMPLE

int temp;

for (int i=0;i < list.size();i++){

temp = list.get(i);

// auto-unboxing of wrapper Integer to its

// int value

System.out.println(temp);

}

FOR-EACH LOOP

§ Java (jdk1.5) introduced another form of the
for loop

§ You can use this with a collection of data such
as an array or an ArrayList

§ It is called the for-each loop or enhanced for

loop

§ It enables the traversing of a complete array

without using an index variable

FOR-EACH LOOP

§ For example:

int[] myList =

{10,20,30,40,50,60,70,80,90,100};

for (int index : myList)

System.out.println(index);

§ This will display all the values from the array
myList above

FOR-EACH LOOP

§ Similarly, the second for loop code from the

previous example can be written using the
for-each loop as follows:

for (int i : list){

int temp = i;

System.out.println(temp);

}

§ Or even:

for (int i : list){

System.out.println(i);

}

ARRAYLIST VS ARRAY

§ Arrays are fixed in size once they are created

§ Once you start putting values/objects in an array,

you can not make it larger

§ An ArrayList instance keeps increasing in

size and capacity as you add more elements

§ Size = actual number of elements in the list

at the moment

ARRAYLIST VS ARRAY

§ Capacity = the number of elements the list

can currently hold (i.e. amount of memory

currently reserved for the list)

§ Capacity can be explicitly increased and/or

increases automatically anyway

§ The base type of an array is specified when

the array is declared

§ All elements of the array must be of the same

type (i.e. arrays contain a fixed homogenous type

of values including primitives)

ARRAYLIST VS ARRAY

§ The base type of an ArrayList instance is a

class

§ Arrays have convenient traditional [square

bracket] notation

§ ArrayList instances are objects with

constructors and methods

§ Arrays are stored more efficiently

ARRAYLIST VS ARRAY

§ ArrayLists are also implemented using

arrays anyway (but that need not concern the

client)

§ Elements of an ArrayList move left or right

during removal or insertion

ARRAYLISTDEMO CLASS
import java.util.ArrayList;

import java.util.Scanner;

public class ArrayListDemo {

public static void main(String[] args){

ArrayList<String> toDoList = new

ArrayList<String>();

System.out.println("Enter items

for the list, when prompted.");

boolean done = false;

Scanner kbd = new Scanner(System.in);

ARRAYLISTDEMO CLASS

while (!done) {

System.out.println("Type entry");

String entry = kbd.nextLine();

toDoList.add(entry);

System.out.print("More items for

the list?");

String ans = kbd.nextLine();

if (!ans.equalsIgnoreCase("yes"))

done = true;

} // end while

ARRAYLISTDEMO CLASS

System.out.println("List contains");

int listSize = toDoList.size();

for (int position=0;

position<listSize;position++)

System.out.println(

toDoList.get(position));

/* Alternate code for displaying the list:

System.out.println("The list contains:");

for (String element : toDoList)

System.out.println(element); */

}// end main

}// end class

ARRAYLISTDEMO CLASS

§ Note that the above program will not compile

under jdk 1.4 or earlier versions of Java

because these versions did not allow generics

STACKS IN JAVA

§ There is a Stack class in the java.util

package

§ It is derived from the Vector class

§ Its methods include:

§ empty()

§ peek()

§ pop()

§ push(E item)

STACKS IN JAVA

// File: TestStackADT

/* Program to read in list of names and display the

list in reverse order */

import java.util.*;

class TestStackADT {

public static void main(String[] args){

Stack myStack <String> = new

Stack <String> ();

String nameStr;

boolean done = false;

STACKS IN JAVA

System.out.println("Please enter the

list of names.");

System.out.println("'quit' to finish.");

System.out.print("Name:");

Scanner kbd = new Scanner(System.in);

nameStr = kbd.nextLine();

while(

!nameStr.equalsIgnoreCase("quit")){

myStack.push(nameStr);

System.out.print("Name:");

nameStr = kbd.nextLine();

} // end while

STACKS IN JAVA

System.out.println("\nThe list in

reverse order is:");

while (!myStack.empty()) {

nameStr = myStack.pop();

// typecast back to String required above

System.out.println(nameStr);

} // end while

System.out.println("\nEnd of

Program - Bye.");

}// end of main

}// end of class

QUEUES AND OTHER ADTs

IN JAVA

§ Other data structure classes can be found in

Java API, Java class libraries purchased from

software developers or found free on the

Internet

§ Also check out software provided with text

books for undergraduate data structures

courses

§ Once you have downloaded such code,

compile it and javadoc it and it is ready to use

QUEUES AND OTHER ADTs

IN JAVA
§ Note that you will have to obtain copyright

clearance if you sell software which uses

classes downloaded from other sources

§ Java API has a Queue interface and a

LinkedList class (in java.util package)

which can be used to implement a simple

queue

§ However, it is easy to write your own Queue

class based on the ArrayList class (covered

in this topic), as follows:

GENERICQUEUE CLASS

/**

* File: GenericQueue.java

* Implements a Generic queue class using the

java.util.ArrayList class

* Usage: To create a queue of strings, use:

* GenericQueue<String> myQueue = new

GenericQueue<String>();

* @author P S Dhillon

*/

GENERICQUEUE CLASS

public class GenericQueue<E> {

private java.util.ArrayList<E> list

= new java.util.ArrayList<E>();

public int size() {

return list.size();

}

public E peek() {

return list.get(0);

// returns element at the head of

// the queue without removing it

}

GENERICQUEUE CLASS

public boolean isEmpty() {

return list.isEmpty();

}

public void append (E obj) {

list.add(obj);

// adds element to the end of the queue

}

GENERICQUEUE CLASS

public E remove() {

E obj = list.get(0);

// returns element at the head of the

list.remove(0);

// queue and removes it

return obj;

}

} // end GenericQueue class

EXAMPLE USE OF QUEUE

CLASS

§ How bad is the queue at the cinema?

§ Simulation using the Queue ADT

§ Purpose:

§ Simulate waiting in the queue for 30 minutes and

produce a report consisting of:

§ Number of paid customers for movie A

§ Number of paid customers for movie B

§ Number of customers turned away because the queue

was too long

EXAMPLE USE OF QUEUE

CLASS

§ Given:

§ One ticket office with one queue

§ Average time to serve one customer is 10

seconds

§ Probability of a new customer arriving during the

10 second interval is 0.7 (70%)

§ Maximum length of queue is 10

SIMULATION

§ A QUEUE OF BOX OFFICE CUSTOMERS

§ Pseudocode for the main loop:

Loop 180 times

Customer Service:

if the queue is not empty

serve the person at the front of

the queue

increment count of the film chosen

SIMULATION

Customer Arrival:

generate random probability for

another arrival

if the probability is > 70%

there is no arrival

else

if the queue has length 10

the customer turns away

increment turnedAway counter

SIMULATION

else

select a film for customer

and place them in the queue

endloop

CINEMA QUEUE CLASS

/** CinemaQueue.java

* This program simulates movie cinema queue,

* where customers attend movie A or movie B

* Uses the GenericQueue class

* -- */

public class CinemaQueue {

public static void main(String[] args){

GenericQueue<Character> cineQ =

new GenericQueue<Character>();

int timeUnit;

int turnedAway = 0;

CINEMA QUEUE CLASS

int numA = 0; int numB = 0;

char movieChoice; // 'A' or 'B'

for (timeUnit=1;timeUnit <= 180;

timeUnit++){

if (!(cineQ.size() == 0)) {

Character c = (Character)

(cineQ.remove());

// removes customer from queue

// casts Object to wrapper Character

CINEMA QUEUE CLASS

movieChoice = c.charValue();

// unwraps to char

if (movieChoice == 'A')

numA++;

else

numB++;

} // end if

CINEMA QUEUE CLASS

if (Math.random() <= 0.7){

if (cineQ.size() >= 10)

turnedAway++;

else {

// select choice & place it in queue

if (Math.random() <= 0.5)

movieChoice = 'A';

else

movieChoice = 'B';

CINEMA QUEUE CLASS

cineQ.append(new

Character(movieChoice));

// enqueue the wrapped char

} // end else

} // end if

} // end for loop

CINEMA QUEUE CLASS

System.out.println("Movie A

customers: " + numA);

System.out.println("Movie B

customers: " + numB);

System.out.println("Number turned

away: " + turnedAway);

} // end main()

} // end class

IMPLEMENTING DATA

STRUCTURE ADTs

§ There is a lot of work done on implementing

these classes

§ Many tricky methods are known to allow data

structures to be implemented efficiently and you

may study this in future units

§ Often the classes have instance variables

including an array to actually store all the

elements plus perhaps some extra variables

to record the state of the structure

IMPLEMENTING DATA

STRUCTURE ADTs

§ In implementing such classes the

programmer needs to consider:

§ Efficiency issues, size of memory used, speed of

operations

§ The actual way that the structure will be used (eg:

some implementations of lists are better if we

often want to remove items from the middle while

other implementations are better if we never want

to do that)

IMPLEMENTING DATA

STRUCTURE ADTs

§ In implementing such classes the

programmer needs to consider:

§ Multi-threading (you must protect a data structure

if there may be several parallel attempts to use it)

§ Making the style of usage and the method names

fit in with standard usage

END OF TOPIC 10

